PRAWO OBJĘTOŚCI CZĄSTKOWYCH

Objętość (v) zajmowana przez mieszaninę gazów jest równa sumie objętości, które byłyby zajmowane przez składniki mieszaniny, gdyby każdy z nich był umieszczony osobno w tych samych warunkach ciśnienia i temperatury.

$$
v=v_{1}+v_{2}+v_{3}+\ldots=\sum_{i=1}^{n} v_{i}
$$

v - objętość mieszaniny i-składnikowej pod ciśnieniem p i w temperaturze T
v_{i} - objętość cząstkowa składnika i pod ciśnieniem p i w temperaturze T
Dla gazu doskonałego objętość cząstkową składnika i można wyrazić równaniem:

$$
v_{i}=\frac{n_{i} \cdot R \cdot T}{p_{i}}
$$

Dzieląc to równanie przez równanie gazu doskonałego, można otrzymać zależność:

$$
\begin{gathered}
\frac{v_{i}}{v}=\frac{n_{i}}{n} \\
v_{i}=\frac{n_{i} \cdot v}{n}=x_{i} \cdot v \\
v_{i}=x_{i} \cdot v
\end{gathered}
$$

v_{i} - objętość cząstkowa składnika i
n_{i} - liczba moli składnika i
n - liczba moli wszystkich składników
x_{i} - ułamek molowy składnika $i\left(x_{i}=\frac{n_{i}}{n}\right)$
Stała gazowa (R) jest to stała fizyczna równa liczbowo pracy wykonanej przez 1,00 mol gazu doskonałego podgrzanego o 1,00 K podczas przemiany izobarycznej.

$$
R=\frac{p_{0} \cdot V_{0}}{T_{0}}
$$

gdzie:
$p_{0}=1013,25 \cdot 10^{2} \mathrm{~Pa}$
$V_{0}=22,41 \mathrm{dm}^{3}$
$T_{0}=273,15 \mathrm{~K}$
Wartość stałej gazowej nie zależy od rodzaju gazu i dla każdego gazu jest jednakowa, a różne jej wartości wynikają z wyrażania tej stałej w różnych jednostkach.

Przykład 2.26.

Oblicz, jakie ciśnienie wywiera mieszanina gazów $10,00 \mathrm{~g}$ azotu i $5,00 \mathrm{~g}$ tlenu na pojemnik o objętości $50,00 \mathrm{dm}^{3} \mathbf{w}$ temperaturze $30,00^{\circ} \mathrm{C}$.

Sposób 1:

Obliczamy sumaryczną ilość moli gazu w mieszaninie:

$$
\begin{gathered}
n=n_{\mathrm{o}_{2}}+n_{\mathrm{N}_{2}} \\
n=\frac{m_{s}}{M}
\end{gathered}
$$

$n_{\mathrm{O}_{2}}=\frac{5,00 \mathrm{~g}}{32,00 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0,16 \mathrm{mola} \quad n_{\mathrm{N}_{2}}=\frac{10,00 \mathrm{~g}}{28,02 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0,36 \mathrm{mola}$
$n=0,16 \mathrm{mola}+0,36 \mathrm{mola}=0,52$ mole gazu

