# Rozdział <br> 4 <br> <br> Przeliczanie stężeń roztworów 

 <br> <br> Przeliczanie stężeń roztworów}

W pracy laboratoryjnej spotykamy się z koniecznością przeliczenia stężeń roztworów wyrażonych w różnych jednostkach. Przeliczenia stężeń można wykonywać, stosując odpowiednie proporcje lub korzystając ze wzorów uzyskanych w wyniku przekształcenia wzorów opartych na definicji odpowiednich stężeń.

## STĘŻENIE PROCENTOWE $\rightleftharpoons$ STĘŻENIE MOLOWE

Znając definicję stężenia procentowego oraz molowego, można wyprowadzić zależność umożliwiającą wzajemne przeliczanie tych stężeń:

$$
C_{\mathrm{p}}=\frac{m_{\mathrm{s}} \cdot 100 \%}{m_{\mathrm{r}}} \quad \text { oraz } \quad C_{\mathrm{m}}=\frac{n}{V_{\mathrm{r}}}=\frac{m_{\mathrm{s}}}{V_{\mathrm{r}} \cdot M}
$$

Ze wzoru na stężenie procentowe wyznaczamy masę substancji i podstawiamy do wzoru na stężenie molowe:

$$
\begin{gathered}
m_{\mathrm{s}}=\frac{C_{p} \cdot m_{\mathrm{r}}}{100 \%} \\
C_{\mathrm{m}}=\frac{m_{\mathrm{s}}}{V_{\mathrm{r}} \cdot M}=\frac{\frac{C_{\mathrm{p}} \cdot m_{\mathrm{r}}}{100 \%}}{V_{\mathrm{r}} \cdot M}=\frac{C_{\mathrm{p}} \cdot m_{\mathrm{r}}}{V_{\mathrm{r}} \cdot M \cdot 100 \%}
\end{gathered}
$$

Wiedząc, że gęstość roztworu opisuje zależność $d=\frac{m_{r}}{V_{r}}$, możemy ją podstawić do wzoru, pamiętając, że musi być ona wyrażona w gramach na decymetr
sześcienny, co wynika z faktu, że masa roztworu ze stężenia procentowego opisana jest w gramach natomiast objętość roztworu w stężeniu molowym w decymetrach sześciennych.

$$
C_{\mathrm{m}}=\frac{C_{\mathrm{p}} \cdot d}{M \cdot 100 \%} \frac{[\%] \cdot\left[\frac{\mathrm{g}}{\mathrm{dm}^{3}}\right]}{\left[\frac{\mathrm{g}}{\mathrm{~mol}}\right] \cdot[\%]}=\left[\frac{\mathrm{mol}}{\mathrm{dm}^{3}}\right]
$$

Przekształcając otrzymany wzór, otrzymujemy zależność pozwalającą na przeliczanie stężenia procentowego $\left(C_{\mathrm{p}}\right)$ roztworu na stężenie molowe $\left(C_{\mathrm{m}}\right)$ :

$$
C_{\mathrm{p}}=\frac{C_{\mathrm{m}} \cdot M \cdot 100 \%}{d} \frac{\left[\frac{\mathrm{~mol}}{\mathrm{dm}^{3}}\right] \cdot\left[\frac{\mathrm{g}}{\mathrm{~mol}}\right] \cdot[\%]}{\left[\frac{\mathrm{g}}{\mathrm{dm}^{3}}\right]}=[\%]
$$

gdzie:
$m_{\mathrm{s}}$ - masa substancji [g]
$M$ - masa molowa substancji $\left[\frac{\mathrm{g}}{\mathrm{mol}}\right]$
$V_{r}$ - objętość roztworu [ $\mathrm{dm}^{3}$ ]
$d$-gęstość roztworu $\left[\frac{\mathrm{g}}{\mathrm{dm}^{3}}\right]$

## STĘŻENIE PROCENTOWE $\rightleftharpoons$ STĘŻENIE NORMALNE

Znając definicję stężenia procentowego oraz normalnego, można wyprowadzić zależność umożliwiającą wzajemne przeliczanie tych stężeń:

$$
C_{\mathrm{p}}=\frac{m_{\mathrm{s}} \cdot 100 \%}{m_{\mathrm{r}}} \quad \text { oraz } \quad C_{\mathrm{N}}=\frac{n_{\mathrm{Eq}}}{V_{\mathrm{r}}}=\frac{m_{\mathrm{s}}}{V_{\mathrm{r}} \cdot g E q}
$$

Ze wzoru na stężenie procentowe wyznaczamy masę substancji i podstawiamy do wzoru na stężenie normalne oraz wykorzystujemy wzór na gęstość, pamiętając, że musi być ona wyrażona w gramach na decymetr sześcienny:

$$
\begin{gathered}
m_{\mathrm{s}}=\frac{C_{\mathrm{p}} \cdot m_{\mathrm{r}}}{100 \%} \\
C_{\mathrm{N}}=\frac{C_{\mathrm{p}} \cdot m_{\mathrm{r}}}{V_{\mathrm{r}} \cdot g E q \cdot 100 \%}=\frac{C_{\mathrm{p}} \cdot d}{g E q \cdot 100 \%} \frac{[\%] \cdot\left[\frac{\mathrm{g}}{\mathrm{dm}^{3}}\right]}{\left[\frac{\mathrm{q}}{\mathrm{Eq}}\right] \cdot[\%]}=\left[\frac{\mathrm{Eq}}{\mathrm{dm}^{3}}\right]
\end{gathered}
$$

Przekształcając otrzymany wzór, otrzymujemy zależność pozwalającą na obliczenie stężenia normalnego $\left(C_{N}\right)$ ze stężenia procentowego $\left(C_{p}\right)$ :

