Uwaga: Nasze strony wykorzystują pliki cookies. Używamy informacji zapisanych za pomocą cookies i podobnych technologii m.in. w celu dostosowania serwisu do indywidualnych potrzeb użytkowników oraz w celach statystycznych i reklamowych. Mogą też stosować je współpracujące z nami firmy badawcze. W programie służącym do obsługi Internetu można zmienić ustawienia dotyczące cookies. Korzystanie z naszych serwisów internetowych bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci urządzenia. Więcej informacji można znaleźć w naszej Polityce Prywatności.
MENU
Koniec promocji -30%

Data Science i uczenie maszynowe(Miękka)

4.10  [ 31 ocen ]
 Sprawdź recenzje
Rozwiń szczegóły »
Produkt niedostępny
Dodaj do schowka

Data Science i uczenie maszynowe

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego.

Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści — analitycy, informatycy i bazodanowcy — zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy.

Książka podzielona jest na cztery części:

•          Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych.

•          Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy.

•          Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące.

•          Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.


Patroni:


Patroni

  • Sposób dostarczenia produktu fizycznego
    Sposoby i terminy dostawy:
    • Paczka w RUCHu - dostawa 2 dni robocze
    • Odbiór paczki w urzędzie Poczty Polskiej - dostawa 2 dni robocze
    • Dostawa Pocztą Polską - dostawa 2 dni robocze
    • Odbiór paczki w Paczkomacie InPost - dostawa 2 dni robocze
    • Dostawa kurierem - dostawa 1 dzień roboczy
    • Odbiór własny w księgarni PWN - dostawa 3 dni robocze
    Ważne informacje o wysyłce:
    • Nie wysyłamy paczek poza granice Polski.
    • Dostawa do części Paczkomatów InPost oraz opcja odbioru osobistego w księgarniach PWN jest realizowana po uprzednim opłaceniu zamówienia kartą lub przelewem.
    • Całkowity czas oczekiwania na paczkę = termin wysyłki + dostawa wybranym przewoźnikiem.
    • Podane terminy dotyczą wyłącznie dni roboczych (od poniedziałku do piątku, z wyłączeniem dni wolnych od pracy).
NAZWA I FORMAT
OPIS
ROZMIAR
Data_Science-fragment.pdf(pdf)
257 KB

    Polecamy

    Inne wydawcy

    Recenzje

    Nikt nie dodał jeszcze recenzji. Bądź pierwszy!